ICJEM

The Intercontinental Journal of Emergency Medicine aims to publish issues related to all fields of emergency medicine and all specialties involved in the management of emergencies in the hospital and prehospital environment of the highest scientific and clinical value at an international level and accepts articles on these topics.

EndNote Style
Index
Original Article
FGF-21 as a potential biomarker for coronary artery calcification: a non-invasive approach
Aims: The aim of this study was to investigate the relationship between fibroblast growth factor 21 (FGF-21) levels and coronary artery calcium (CAC) scores calculated using the Agatston method, and to evaluate the potential of FGF-21 as a non-invasive biomarker for the assessment of coronary artery calcification.
Methods: A total of 54 adult individuals who had undergone coronary CT angiography within the past three months solely for cardiovascular risk assessment were prospectively included in the study. Serum FGF-21 levels were measured using the ELISA method, and CAC scores were determined via the Agatston scoring system. The relationship between FGF-21 levels and CAC scores was analyzed using Spearman’s correlation test.
Results: A significant and strong positive correlation was observed between FGF-21 levels and CAC scores (r = 0.725, p < 0.001). Diabetes mellitus and hyperlipidemia were significantly associated with higher CAC scores (p = 0.006 and p = 0.024, respectively), whereas their associations with FGF-21 levels were not statistically significant (p = 0.065 and p = 0.104). No significant correlations were found between FGF-21 levels and other variables such as age, gender, hypertension, or biochemical parameters.
Conclusion: The findings suggest that serum FGF-21 levels may be associated with coronary artery calcification and could serve as a non-invasive and easily applicable biomarker in individuals for coronary artery disease. FGF-21 may be particularly useful in clinical settings where access to advanced imaging modalities is limited.


1. Zhao Z, Cui X, Liao Z. Mechanism of fibroblast growth factor 21 in cardiac remodeling.Front Cardiovasc Med. 2023;10:1202730. doi:10. 3389/fcvm.2023.1202730
2. Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine.Int J Biol Sci. 2023;19(1):66-88. doi:10.7150/ijbs.73936
3. Xiaolong L, Dongmin G, Liu M, et al. FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med. 2020;24(9):4992-5006. doi:10.1111/jcmm.15118
4. Liu SQ, Roberts D, Kharitonenkov A, et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep. 2013;3(1):2767. doi:10.1038/srep02767
5. Zhang W, Chu S, Ding W, et al. Serum level of fibroblast growth factor 21 is independently associated with acute myocardial infarction. Plos One. 2015;10(6):e0129791. doi:10.1371/journal.pone.0129791
6. Gu L, Jiang W, Zheng R, Yao Y, et al. Fibroblast growth factor 21 correlates with the prognosis of dilated cardiomyopathy. Cardiology. 2021;146(1):27-33. doi:10.1159/000509239
7. T&oacute;th V, Bene J. The role of FGF21 in cardiovascular diseases. Int J Molecular Sci. 2019;20(15):3710.
8. Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223-241. doi:10.1146/annurev-physiol- 021115-105339
9. Yan J, Wang J, Huang H, et al. Fibroblast growth factor 21 delayed endothelial replicative senescence and protected cells from H2O2-induced premature senescence through SIRT1.Am J Transl Res. 2017; 9(10):4492-4501.
10. Chen JJ, Tao J, Zhang XL, et al. Inhibition of the ox-LDL-induced pyroptosis by FGF21 of human umbilical vein endothelial cells through the TET2-UQCRC1-ROS pathway. DNA Cell Biol. 2020;39(4):661-670. doi:10.1089/dna.2019.5151
11. Yan X, Gou Z, Li Y, et al. Fibroblast growth factor 21 inhibits atherosclerosis in apoE-/- mice by ameliorating Fas-mediated apoptosis. Lipids Health Dis. 2018;17(1):203. doi:10.1186/s12944-018-0846-x
12. Zeng Z, Zheng Q, Chen J, et al. FGF21 mitigates atherosclerosis via inhibition of NLRP3 inflammasome-mediated vascular endothelial cells pyroptosis. Exp Cell Res. 2020;393(2):112108. doi:10.1016/j.yexcr. 2020.112108
13. Zhang Y, Liu Z, Zhou M, Liu C. Therapeutic effects of fibroblast growth factor-21 against atherosclerosis via the NF-&kappa;B pathway.Mol Med Rep. 2018;17(1):1453-1460. doi:10.3892/mmr.2017.8100
14. Wang N, Li JY, Li S, et al. Fibroblast growth factor 21 regulates foam cells formation and inflammatory response in Ox-LDL-induced THP-1 macrophages. Biomed Pharmacother. 2018;108:1825-1834. doi:10.1016/j.biopha.2018.09.143
15. Xiaolong L, Dongmin G, Liu M, et al. FGF21 induces autophagy-mediated cholesterol efflux to inhibit atherogenesis via RACK1 up-regulation. J Cell Mol Med. 2020;24(9):4992-5006. doi:10.1111/jcmm.15118
16. Shang W, Yu X, Wang H, et al. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells. Mol Med Rep. 2015;11(1):503-508. doi:10.3892/mmr.2014.2731
17. Nar G, Cetin SS, Nar R, et al. Is serum fibroblast growth factor 21 associated with the severity or presence of coronary artery disease? J Med Biochem. 2022;41(2):162-167. doi:10.5937/jomb0-30191
18. Li E, Wang T, Wang F, et al. FGF21 protects against ox-LDL induced apoptosis through suppressing CHOP expression in THP1 macrophage derived foam cells. BMC Cardiovasc Disord. 2015;15:80. doi:10.1186/s12872-015-0077-2
19. Wei W, Li XX, Xu M. Inhibition of vascular neointima hyperplasia by FGF21 associated with FGFR1/Syk/NLRP3 inflammasome pathway in diabetic mice. Atherosclerosis. 2019;289:132-142. doi:10.1016/j.atherosclerosis.2019.08.017
20. Jin L, Lin Z, Xu A. Fibroblast growth factor 21 protects against atherosclerosis via fine-tuning the multiorgan crosstalk. Diabetes Metab J. 2016;40(1):22-31. doi:10.4093/dmj.2016.40.1.22
21. Lin Z, Pan X, Wu F, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation. 2015;131(21):1861-1871. doi:10.1161/CIRCULATIONAHA.115.015308
22. Maeng HJ, Lee GY, Bae JH, et al. Effect of fibroblast growth factor 21 on the development of atheromatous plaque and lipid metabolic profiles in an atherosclerosis-prone mouse model. Int J Mol Sci. 2020;21(18):6836. doi:10.3390/ijms21186836
23. Liu C, Sch&ouml;nke M, Zhou E, et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res. 2022;118(2):489-502. doi:10.1093/cvr/cvab076
24. Neves PO, Andrade J, Mon&ccedil;&atilde;o H. Coronary artery calcium score: current status.Radiol Bras. 2017;50(3):182-189. doi:10.1590/0100-3984. 2015.0235
25. Arjmand Shabestari A. Coronary artery calcium score: a review.Iran Red Crescent Med J. 2013;15(12):e16616. doi:10.5812/ircmj.16616
26. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice.Eur Heart J. 2021; 42(34):3227-3337. doi:10.1093/eurheartj/ehab484
27. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovasculardisease: a report of the American College of Cardiology/American Heart Association Task ForceonClinical Practice Guidelines.J Am Coll Cardiol. 2019;74(10): e177-e232. doi:10.1016/j.jacc.2019.03.010
28. Zhang Y, Yan J, Yang N, et al. High serum fibroblast growth factor 21 concentration is closely associated with increased risk of cardiovascular disease: a systematic review and meta-analysis. Front Cardiovasc Med. 2021;8:705273. doi:10.3389/fcvm.2021.705273
29. Shen Y, Ma X, Zhou J, et al. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease.Cardiovasc Diabetol. 2013;12:124. doi:10.1186/1475-2840-12-124
30. Tan H, Yue T, Chen Z, Wu W, Xu S, Weng J. Targeting FGF21 in cardiovascular and metabolic diseases: from mechanism to medicine.Int J Biol Sci. 2023;19(1):66-88. doi:10.7150/ijbs.73936
31. Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115(6):1627-1635. doi:10.1172/JCI23606
32. Osataphan S, Macchi C, Singhal G, et al. SGLT2 inhibition reprograms systemic metabolism via FGF21-dependent and -independent mechanisms. JCI Insight. 2019;4(5):e123130. doi:10.1172/jciinsight.123130
33. Talukdar S, Zhou Y, Li D, et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and ımproves lipid profile in non-human primates and type 2 diabetic subjects.Cell Metab. 2016;23(3): 427-440. doi:10.1016/j.cmet.2016.02.001
34. Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes.Cell Metab. 2013; 18(3):333-340. doi:10.1016/j.cmet.2013.08.005
35. &Ccedil;altek NC, &Ccedil;altek HO, Mihmanlı V, Gen&ccedil; S, Akt&uuml;rk E. Gestasyonel diabetes mellitus hastalarında serum fibroblast b&uuml;y&uuml;me fakt&ouml;r&uuml; 21 d&uuml;zeylerinin değerlendirilmesi. Bugs Med Bull. 2024;9(4):242-248. doi: 10.4274/BMB.galenos.2024.2024-05-039
Volume 3, Issue 3, 2025
Page : 52-57
_Footer