

Retrospective analysis of 1-month and 1-year mortality due to bleeding in patients using warfarin

İsmail Erkan Aydin¹, Banu Karakuş Yılmaz¹, Erdem Çevik²

¹Department of Emergency Medicine, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Türkiye

²Department of Emergency Medicine, Sultan 2. Abdulhamid Han Training and Research Hospital, İstanbul, Türkiye

Cite this article: Aydin İE, Karakuş Yılmaz B, Çevik E. Retrospective analysis of 1-month and 1-year mortality due to bleeding in patients using warfarin. *Intercont J Emerg Med.* 2025;3(2):31-34.

Corresponding Author: İsmail Erkan Aydin, erkanaydinmd@gmail.com

Received: 26/02/2025

Accepted: 15/03/2025

Published: 13/06/2025

ABSTRACT

Aims: Warfarin is approved for the prevention and/or treatment of venous thrombosis, pulmonary embolism, and thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement. International normalized ratio (INR) above the therapeutic range increases the risk of bleeding, its level below the therapeutic range increases the risk of thromboembolic complications. We aimed to evaluate the effect of patients' INR levels on one-month and one-year mortality.

Methods: The hospital's electronic information management system retrospectively screened between 01.01.2015, and 31.12.2016. Patients who applied to the emergency department (ED) with a history of warfarin use, were included in the study. The receiver operating characteristics (ROC) analysis and the area under the curve (AUC) for the mortality estimation calculations were used for statistical analysis.

Results: Total of 1299 patients with elevated INR due to warfarin use were included in the study. The major ED admission causes were bleeding (n=338, 26.02%) and INR control with no other complaint (n=56, 4.31%). Mortality was observed within one month in 118 (9.1%) patients and within one year in 292 (22.5%) patients. The ROC analysis for 1-month and 1-year mortality estimation, AUC values for age, INR, urea, and creatinine were 0.640, 0.549, 0.702, 0.629 and 0.629, 0.532, 0.671, 0.608, respectively.

Conclusion: The patients admitted to ED due to high INR values are usually corrected their INR values and then discharged. These patients' one-year mortality is high so to identify and eliminate the underlying cause of the INR elevation is important.

Keywords: Warfarin, emergency department, mortality, international normalized ratio

INTRODUCTION

Warfarin is approved for the prevention and/or treatment of venous thrombosis, pulmonary embolism, and thromboembolic complications associated with atrial fibrillation and/or cardiac valve replacement and to reduce the risk of death, recurrent myocardial infarction, and thromboembolic events after myocardial infarction.¹

Warfarin and other vitamin K antagonists (VKA) (acenocoumarol, phenprocoumon, flindione) are used in various clinical settings. Warfarin is still widely used, despite increasing interest and investigations focused on the effectiveness of direct oral anticoagulants (DOACs).² Their use is challenging because their therapeutic range is narrow, and dosing is affected by many factors, including genetic variation, drug interactions, and diet.³ On the other hand, while international normalized ratio (INR) above the therapeutic range increases the risk of bleeding, its level below

the therapeutic range increases the risk of thromboembolic complications.⁴ So, there is a need for frequent monitoring and the associated risk of bleeding and other side effects.⁵

This study is aimed to evaluate the effect of patients' INR levels on one-month and one-year mortality.

METHODS

This retrospective observational study was conducted in a tertiary education and research hospital with 450.000 patient admissions annually. This study was conducted in accordance with the 1989 Declaration of Helsinki and was approved by the local ethics committee. This study was approved by the Clinical Researches Ethics Committee of University of Health Sciences Şişli Hamidiye Etfal Training and Research Hospital (Date: 17.10.2017, Decision No: 870). Patients who applied to the emergency department (ED) between January

1, 2015, and December 31, 2016, with a history of warfarin use, were included in the study. We retrospectively screened the hospital's electronic information management system and patient charts. Gastrointestinal bleeding, hematuria, mucosal bleeding, abdominal pain, and ecchymosis were considered side effects. Exclusion criteria were missing data and younger than 18 years of age.

We recorded demographic data, warfarin indications, primary complaints at ED admission, Complete blood count (CBC), INR, prothrombin time (PT), activated partial thromboplastin time (aPTT), urea, creatinine, AST, ALT results, and treatments given in the ED. One-month and one-year mortality were retained from the nationwide demographics system. The primary outcome was the length of stay time (LOS). Secondary outcomes were one-month and one-year mortality rates.

Statistical Analysis

We used the Kolmogorov-Smirnov test for the normal distribution of data. Results were reported as mean \pm standard deviation (SD) for continuous variables with normal distribution; median and interquartile range (IQR) for non-normally distributed variables; and frequency and percentage for categorical variables. The contribution of the variables to mortality prediction was evaluated with multivariate regression analysis, and the odd's ratio was calculated. We performed a Kaplan-Meier analysis for the mortality rate analysis. A p-value of <0.05 was considered statistically significant. We used SPSS 20.0 statistical package for the analyses.

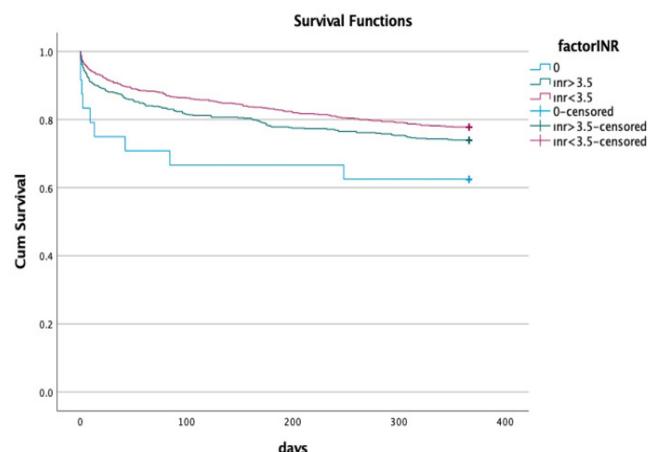
RESULTS

We included a total of 1299 patients with elevated INR due to warfarin use in the study. 45.1% (n=586) of the patients were male, the mean age was 68.4 ± 14.9 (min-max: 18-104) years, and the mean INR value was 4.2 ± 2.1 (min-max: 2.5-14.2).

Indications for warfarin were atrial fibrillation (AF) 39.2% (n=509), deep vein thrombosis (DVT) 1.8% (n=23), cardiac valve replacement 35.4% (n=460), stroke 22.2% (n=288), and others % 1.5 (n=19).

The major ED admission causes were bleeding (n=338, 26.02%) and INR control with no other complaint (n=56, 4.31%). The distribution of bleeding symptoms by systems is given in **Table 1**. In the comparison of the patients presenting with bleeding symptoms and without bleeding symptoms, the INR values were 4.9 ± 2.6 (2.5-14.2) and 3.9 ± 1.8 (2.5-14.0), respectively, and there was a statistically significant difference between the groups ($p<0.001$).

Table 1. The distribution of bleeding symptoms by systems


	n	%
Cardiovascular	2	0.6
Thorax	7	2.1
Musculoskeletal	162	47.9
Gastrointestinal	68	20.1
Genitourinary	69	20.4
Ear nose throat	30	8.9
Total	338	100.0

The treatments given in the ED were erythrocyte suspension (n=110, 8.5%), fresh frozen plasma (n=183, 14.1%), and vitamin K (n=229, 17.6%). 986 (75.9%) patients were followed without treatment.

Mortality was observed within one month in 118 (9.1%) patients and within one year in 292 (22.5%) patients. Age, APTT, white blood cell (WBC), hemoglobin (HGB), platelet (PLT), urea, creatinine, AST, vitamin K treatment, and follow-up without treatment showed statistically significant differences between patients who died and survived within one month ($p<0.05$). Besides, compared to the one-year mortality, age, APTT, WBC, HGB, PLT, urea, creatinine, and AST values showed a statistically significant difference between mortality and non-mortality groups ($p<0.05$). INR value did not show a statistically significant difference between the groups for one-month and one-year mortality (**Table 2**).

In multivariate logistic regression analysis for 1-month mortality, age ($p=0.000$, odds ratio: 1.049), WBC ($p=0.042$, odds ratio: 1.028), urea ($p=0.002$, odds ratio: 1.007) and AST ($p=0.016$, odds ratio: 1.002) was identified as an independent risk factor. Besides, age ($p=0.000$, odds ratio: 1.030), aPTT ($p=0.000$, odds ratio: 1.013), WBC ($p=0.046$, odds ratio: 1.028), urea ($p=0.000$, odds ratio: 1.011) and creatinine ($p=0.022$, odds ratio: 0.807) were determined as independent risk factors in the multivariate logistic regression analysis for 1-year mortality.

Kaplan-Meier analysis showed a mortality rate of 9.1% for 1-month and 22.5% for 1-year and estimate survive time was 292 days at INR ≥ 3.5 group and 306 days at INR < 3.5 group (**Figure**).

Figure. Mortality of the patients according to Kaplan-Meier analysis
INR: International normalized ratio

DISCUSSION

We primarily concluded that patients with high INR levels admitted to ED have high one-year mortality rates, and age, aPTT, WBC, HGB, PLT, urea, creatinine, and AST values are independent factors.

To the best of our knowledge, no study that includes all warfarin-related side effects has been reported in the current literature.⁶ One-month and one-year mortality were studied only for bleeding due to warfarin-induced high INR in the

Table 2. Comparison of demographic data and laboratory results

		One month mortality						One year mortality						p
		n	Mean	SD	Lower	Upper	p	n	Mean	SD	Lower	Upper		
Age	Survive	1181	67.64	15.17	18	104	<0.001	1007	66.73	15.35	19	101	<0.001	
	Mortal	118	75.81	10.40	39	94		292	74.07	12.00	18	104		
INR	Survive	1181	4.13	2.10	2.50	14.20	0.304	1007	4.14	2.12	2.50	14.2	0.688	
	Mortal	118	4.34	2.08	2.50	12.50		292	4.19	1.99	2.50	14		
PT	Survive	1181	53.10	29.95	6.88	349	0.383	1007	53.18	30.71	6.88	346	0.744	
	Mortal	118	55.61	28.07	11.7	159		292	53.83	26.40	11.70	159		
aPTT	Survive	1179	65.78	27.71	5.29	251.10	<0.001	1005	65.62	27.34	5.29	251.10	0.005	
	Mortal	118	77.79	41.70	27	240		292	71.17	35.47	27	240		
WBC	Survive	1105	9.51	3.99	1.48	46.40	<0.001	937	9.35	3.73	1.48	46.40	<0.001	
	Mortal	117	11.84	7.13	0.53	51.57		285	10.99	6.04	0.53	51.57		
HGB	Survive	1106	11.96	2.39	2.80	18.30	<0.001	937	12.01	2.35	2.80	18.30	<0.001	
	Mortal	117	10.98	2.61	3	17.40		286	11.39	2.63	3	17.40		
PLT	Survive	1105	252.03	90.68	25	979	0.021	936	252.70	88.96	25	979	0.068	
	Mortal	117	231.55	96	47	740		286	241.44	98.50	39	767		
Urea	Survive	1046	59.38	45.43	0.61	404.40	<0.001	882	55.92	41.94	0.61	404.40	<0.001	
	Mortal	117	97.06	71.46	18.90	396		281	85.95	64.27	15	396		
CREA	Survive	1046	1.29	1.33	0.25	27.10	<0.001	882	1.27	1.37	0.25	27.10	<0.001	
	Mortal	117	1.85	1.54	0.18	7.81		281	1.58	1.29	0.17	7.81		
ALT	Survive	1045	26.38	59.33	0	810.10	<0.001	882	25.52	58.59	0	810.10	0.005	
	Mortal	117	59.23	217.47	1.80	2270.60		281	42.76	148.69	1.60	2270.60		
AST	Survive	1045	33.30	85.13	1.13	1622	<0.001	882	31.74	85.86	2.30	1622	0.001	
	Mortal	117	111.54	488.50	4.30	5120.30		281	70.77	322.27	1.13	5120.30		

SD: Standard deviation, INR: International normalized ratio, PT: Prothrombin time, aPTT: Activated partial thromboplastin time, WBC: White blood cell, HGB: Hemoglobin, PLT: Platelet, CREA: Creatinine

ED. In our study, one-month and one-year mortality were relatively high. In high INR value patients, Conti et al.⁶ also found similar mortality rates for 1-month and 1-year at 6% and 17%, respectively.

In various studies conducted in this area, the high-risk age has been reported as 65.14 ± 14.8 , 64.2 ± 13.3 , and 68.8 (29-85).⁷⁻⁹ In our study, the mean age of the patients was 68.4 ± 14.9 (18-104), which was considered compatible with the literature. Many studies have determined that the risk of high INR due to the use of warfarin increases in elderly patients. This may be due to inadequate drug compliance, increased risk of other drug interactions due to multiple drug use, and decreased warfarin clearance by age.^{10,11}

In addition, in our study, in terms of 1-month and 1-year mortality, age, aPTT, WBC, HGB, PLT, urea, creatinine, and AST values were found to differ between mortality and non-mortality groups. The reasons for the difference in these parameters are considered as the low physiological reserve in advanced ages; aPTT, HGB, and PLT indicate the severity of blood loss due to coagulopathy and bleeding complications; WBC elevation secondary to early stressor response; comorbidities and drug use triggering AST elevation; and warfarin is preferred over DOACs in patients with chronic renal failure. While vitamin K treatment made a difference between the mortality and non-mortality groups for 1-month mortality, that was not valid for 1-year mortality.

Since warfarin pharmacokinetics are complicated, its therapeutic index is narrow and affected by many factors. It has been reported that INR values of ≤ 2 increase the thromboembolism risk, and INR values of ≥ 5 increase the risk of significant bleeding.¹² Close monitoring is recommended to keep the INR level in the range of 2-3. In our study, in which we included patients who developed bleeding complications due to warfarin treatment, the INR values were 4.2 ± 2.1 (2.5-14.2), in line with the literature. No significant correlation was reported between INR level and major bleeding.¹³⁻¹⁵ In our study, the INR value was higher in patients with bleeding symptoms than in those who do not have a bleeding complication. In addition, we found that high INR did not affect one-month and one-year mortality rates. Still, bleeding complications were not divided into major and minor in our study.

Drug interactions or superimposed conditions (e.g., liver disease, malabsorption) that may interfere with warfarin ingestion, absorption, or metabolism are the most common causes of a supratherapeutic INR. In our study, the most common indication among the patients with a high INR was AF. Due to all these reasons, while warfarin is widely used, especially in patients with chronic kidney disease or heart valve replacement, DOACs are preferred anticoagulants.^{3,5}

CONCLUSION

The patients admitted to ED due to high INR values are usually corrected their INR values and then discharged. Especially keeping in mind that their one-year mortality is high, we recommend to identify and eliminate the underlying cause of the INR elevation and to follow up with these patients more closely.

ETHICAL DECLARATIONS

Ethics Committee Approval

This study was approved by the Clinical Researches Ethics Committee of University of Health Sciences Şişli Hamidiye Etfal Training and Research Hospital (Date: 17.10.2017, Decision No: 870).

Informed Consent

Because the study was designed retrospectively, no written informed consent form was obtained from patients.

Referee Evaluation Process

Externally peer-reviewed.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Financial Disclosure

The authors declared that this study has received no financial support.

Author Contributions

All of the authors declare that they have all participated in the design, execution, and analysis of the paper, and that they have approved the final version.

REFERENCES

- Wysowski DK, Nourjah P, Swartz L. Bleeding complications with warfarin use. *Arch Intern Med.* 2007;167(13):1414. doi:10.1001/archinte.167.13.1414
- Adam SS, McDuffie JR, Ortel TL, Williams JW. Comparative effectiveness of warfarin and new oral anticoagulants for the management of atrial fibrillation and venous thromboembolism. *Ann Intern Med.* 2012;157(11):796-807. doi:10.7326/0003-4819-157-10-201211200-00532
- Hylek EM, Held C, Alexander JH, et al. Major bleeding in patients with atrial fibrillation receiving apixaban or warfarin. *J Am Coll Cardiol.* 2014;63(20):2141-2147. doi:10.1016/j.jacc.2014.02.549
- Keepanasseril A, Pillai AA, Baghel J, et al. Alternatives to low molecular weight heparin for anticoagulation in pregnant women with mechanical heart valves in middle-income countries: a cohort study. *Glob Heart.* 2021;16(1):68. doi:10.5334/gh.1011
- Zhu J, Alexander GC, Nazarian S, Segal JB, Wu AW. Trends and variation in oral anticoagulant choice in patients with atrial fibrillation, 2010–2017. *Pharmacotherapy.* 2018;38(9):907-920. doi:10.1002/phar.2158
- Conti A, Renzi N, Molesti D, et al. Short and long-term mortality of patients presenting with bleeding events to the emergency department. *Am J Emerg Med.* 2017;35(12):1867-1872. doi:10.1016/j.ajem.2017.06.025
- Cruickshank J, Ragg M, Eddey D. Warfarin toxicity in the emergency department: recommendations for management. *Emerg Med (N Y).* 2001;13(1):91-97. doi:10.1046/j.1442-2026.2001.00185.x
- Kocak S, Ertekin B, Erdemir Ozturk E, Dundar ZD, Acar T, Girisgin AS. Bleeding due to warfarin treatment: five years of experience. *Turkiye Klinikleri Cardiovasc Sci.* 2019;31(3):125-134. doi:10.5336/cardiosci.2019-65895
- Hirai T, Hamada Y, Geka Y, et al. A retrospective study on the risk factors for bleeding events in warfarin therapy, focusing on renal function. *Eur J Clin Pharmacol.* 2017;73(11):1491-1497. doi:10.1007/s00228-017-2316-1
- Miao L, Yang J, Huang C, Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. *Eur J Clin Pharmacol.* 2007;63(12):1135-1141. doi:10.1007/s00228-007-0381-6
- Jensen BP, Chin PKL, Roberts RL, Begg EJ. Influence of adult age on the total and free clearance and protein binding of (R)- and (S)-warfarin. *Br J Clin Pharmacol.* 2012;74(5):797-805. doi:10.1111/j.1365-2125.2012.04259.x
- Kearon C, Ginsberg JS, Kovacs MJ, et al. Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism. *N Engl J Med.* 2003;349(7):631-639. doi:10.1056/NEJMoa035422
- Palareti G, Leali N, Coccheri S, et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). *Lancet.* 1996;348(9025):423-428. doi:10.1016/S0140-6736(96)01109-9
- Levine MN, Raskob G, Landefeld S, Kearon C. Hemorrhagic complications of anticoagulant treatment. *Chest.* 2001;119(1):108S-121S. doi:10.1378/chest.119.1_suppl.108S
- Denizbasi A, Unluer EE, Guneysel O, Eroglu S, Kosargelir M. Complications of warfarin therapy and the correlation of the outcomes with INR levels. *J Emerg Med.* 2006;2(30):241-242.